
CNT 4714:  JSPs Part 1 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Summer 2014

Introduction to JavaServer Pages (JSP) – Part 1

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/sum2014



CNT 4714:  JSPs Part 1 Page 2 Dr. Mark Llewellyn ©

Introduction to JavaServer Pages (JSP)

• JavaServer Pages (JSP) is an extension of servlet technology.

• Like servlets, JSPs simplify the delivery of dynamic web

content. They allow web programmers to create dynamic

content by reusing predefined components and by interacting

with components using server-side scripting.

• JSPs can reuse JavaBeans and create custom tag libraries that

encapsulate complex, dynamic functionality.

• JSP classes and interfaces can be found in packages 

javax.servlet.jsp and 

javax.servlet.jsp.tagext. 



CNT 4714:  JSPs Part 1 Page 3 Dr. Mark Llewellyn ©

Introduction to JSP (cont.)

• There are four key components to JSPs

1. Directives: messages to the JSP container (server component

executing the JSP) that enable the programmer to specify page

settings, include content from other resources and specify custom tag

libraries to use in a JSP.

2. Actions: encapsulate functionality based on the information sent to

the server as part of a specific client request. They can also create

Java objects for use in JSP scriplets.

3. Scripting elements: enable the programmer to insert Java code that

interacts with components in a JSP to perform request processing.

4. Tag libraries: are part of the tag extension mechanism that enables

programmers to create custom tags. Typically, most useful for web

page designers with little knowledge of Java.



CNT 4714:  JSPs Part 1 Page 4 Dr. Mark Llewellyn ©

Introduction to JSP (cont.)

• In some ways, JSPs look like standard HTML or XML

documents.

• JSPs normally include HTML or XML markup. Such

markup is known as fixed-template data or fixed-template

text.

• Fixed-template data/text often helps a programmer decide

whether to use a servlet or a JSP. Recall that JSPs are most

often used when most of the content sent to the client is

fixed-template data and little or none of the content is

generated dynamically with Java code. Servlets are more

commonly used when only a small amount of the content

returned to the client is fixed-template data.



CNT 4714:  JSPs Part 1 Page 5 Dr. Mark Llewellyn ©

Introduction to JSP (cont.)

• When a JSP-enabled server receives the first request for a JSP, the JSP
container translates the JSP into a Java servlet that handles the current
request as well as all future requests to the JSP.

• Literal text in the JSP becomes string literals in the servlet that represents
the translated JSP.

• Any errors that occur in compiling the new servlet result in translation-
time errors.

• The JSP container places the Java statements that implement the JSP’s
response in method _jspService at translation time.

• If the new servlet compiles properly, the JSP container invokes method
_jspService to process the request.

• The JSP may respond directly or may invoke other web application
components to assist in processing the request. Any errors that occur
during request processing are known as request-time errors.



CNT 4714:  JSPs Part 1 Page 6 Dr. Mark Llewellyn ©

Introduction to JSP (cont.)

• Overall, the request-response mechanism and the JSP life-

cycle are the same as those of a servlet.

• JSPs can override methods jspInit and jspDestroy

(similar to servlet methods init and destroy), which the

JSP container invokes when initializing and terminating a

JSP.

• A JSP programmer defines these methods using JSP

declarations which are part of the scripting mechanism.



CNT 4714:  JSPs Part 1 Page 7 Dr. Mark Llewellyn ©

The First JSP Example

• Our first look at a JSP is with a simple clock JSP which

displays the current date and time inserted into a web page

using a JSP expression.

• To execute this clock.jsp from your own system, as

with the servlet examples we’ve been running – copy the

clock.jsp file into the webapps subdirectory you

created for your servlet examples.

– My Tomcat webapps subdirectory is named CNT4714 and I

created a subdirectory named JSP in this directory to hold all

the JSP examples. From the index page I created – the JSPs

can be executed directly, otherwise…type

http://localhost:8080/CNT4714/jsp/clock.jsp to execute this

JSP.

http://localhost:8080/cop4610/jsp/clock.jsp


CNT 4714:  JSPs Part 1 Page 8 Dr. Mark Llewellyn ©

JSP expressions are delimited by 

<%= … %>.

Creates a new instance of class Date (package java.util).  

When the client requests this JSP, this expression inserts the 

String representation of the date and time in the response to 

the client.

XHTML meta-element 

sets a refresh interval 

of 60 seconds



CNT 4714:  JSPs Part 1 Page 9 Dr. Mark Llewellyn ©



CNT 4714:  JSPs Part 1 Page 10 Dr. Mark Llewellyn ©

Implicit Objects

• Implicit objects provide access to many servlet capabilities in

the context of a JSP.

• Implicit objects have four scopes:

1. Application: the JSP container owns objects with application scope.

Any JSP can manipulate such objects.

2. Page: objects with page scope can only be manipulated in the page

that defines them. Each page has its own instances of the page-scope

implicit objects.

3. Request: these objects go out of scope when request processing

completes with a response to the client.

4. Session: these objects exist for the client’s entire browsing session.



CNT 4714:  JSPs Part 1 Page 11 Dr. Mark Llewellyn ©

Implicit Objects
Implicit Object Description

Application Scope

application This javax.servlet.ServletContext object represents the 

container in which the JSP executes.

Page Scope

config This javax.servlet.ServletConfig object represents the 

JSP configuration options. As with servlets, configuration options can 

be specified in a Web application descriptor.

exception This java.lang.Throwable object represents the exception that 

is passed to the JSP error page. This object is available only in a JSP 

error page.

out This javax.servlet.jsp.JspWriter object writes text as part 

of the response to a request. This object is used implicitly with JSP 

expressions and actions that insert string content in a response.

page This java.lang.Object object represents the this reference for 

the current JSP instance.

pageContext
This javax.servlet.jsp.PageContext object hides the implementation details of the

Underlying servlet and JSP container and provides JSP programmers with

Access to the implicit objects listed in this table.



CNT 4714:  JSPs Part 1 Page 12 Dr. Mark Llewellyn ©

Implicit Objects

Implicit Object Description
response This object represents the response to the client. The object normally 

is an instance of a class that implements HttpServletResponse

(package javax.servlet.http). If a protocol other than HTTP is 

used, this object is an instance of a class that implements 

javax.servlet.ServletResponse .

Request Scope

request This object represents the client request. The object normally is an 

instance of a class that implements HttpServletRequest

(package javax.servlet.http). If a protocol other than HTTP is 

used, this object is an instance of a subclass of 

javax.servlet.ServletRequest.

Session Scope

session This javax.servlet.http.HttpSession object represents 

the client session information if such a session has been created. This 

object is available only in pages that participate in a session.

. 



CNT 4714:  JSPs Part 1 Page 13 Dr. Mark Llewellyn ©

Scripting

• JSPs often present dynamically generated content as

part of an HTML document that is sent to the client

in response to a request.

• In some cases, the content is static, but is output

only if certain conditions are met during a request

(e.g., providing values in a form that submits a

request).

• JSP programmers can insert Java code and logic in a

JSP using scripting.



CNT 4714:  JSPs Part 1 Page 14 Dr. Mark Llewellyn ©

Scripting Components
• JSP scripting components include scriplets, comments, expressions,

declarations, and escape sequences.

• Scriplets are blocks of code delimited by <% and %>. They contain Java
statements that the container places in method _jspService at
translation time.

• Comments come in three flavors in JSPs: JSP comments, XHTML
comments, and scripting language comments.

– JSP comments are delimited by <%-- and --%>. Can be placed throughout
the JSP except inside scriplets.

– XHTML comments are delimited by <!-- and -->. Can be placed anywhere
in the JSP except inside scriplets.

– Scripting language comments are Java comments (Java is currently the only
JSP scripting language which is allowed). Scriplets can use either // or /* and
*/ as in normal Java.



CNT 4714:  JSPs Part 1 Page 15 Dr. Mark Llewellyn ©

Scripting Components (cont.)

• JSP comments and scripting language comments are ignored

and do not appear in the response to a client. When clients

view the source code of a JSP response, they will see only

the HTML comments in the source code.

– The different comment styles are useful for separating comments that

the user should be able to see from those that document logic

processed on the server-side.

• Expressions are delimited by <%= and %> and contain a

Java expression that is evaluated when a client requests the

JSP containing the expression. The container converts the

result of a JSP expression to a String object, then outputs

the String as part of the response to the client.



CNT 4714:  JSPs Part 1 Page 16 Dr. Mark Llewellyn ©

Scripting Components (cont.)

• Declarations are delimited by <%! and %>. Declarations
enable the JSP programmer to define variables and methods
for use in a JSP. Variables become instance variables of the
servlet class that represents the translated JSP. Similarly,
methods become members of the class that represents the
translated JSP. Declaration of variables and methods in a
JSP use Java syntax such as:

<%! int increment = 0; %>

• Escape sequences are necessary to include special characters
or character sequences that the JSP container normally uses
to delimit JSP code.

– Example: literal: <%, escape sequence is: <\%



CNT 4714:  JSPs Part 1 Page 17 Dr. Mark Llewellyn ©

Scripting Example – welcome.jsp
<!DOCTYPE html>

<!-- welcome.jsp -->

<!-- JSP that processes a "get" request containing data. -->

<html lang="en">

<!-- head section of document -->

<head>

<title>A JSP that processes "get" requests with data</title>

</head>

<!-- body section of document -->

<body>

<% // begin scriptlet

String name = request.getParameter( "firstName" );

if ( name != null ) 

{

%> <%-- end scriptlet to insert fixed template data --%>

HTML comments shown

in blue.

Scriplets shown in green.



CNT 4714:  JSPs Part 1 Page 18 Dr. Mark Llewellyn ©

<h1>

Hello <%= name %>, <br />

Welcome to JavaServer Pages Technology!

</h1>

<% // continue scriptlet

} // end if

else {

%> <%-- end scriptlet to insert fixed template data --%>

<form action = "welcome.jsp" method = "get">

<p>Type your first name and press Submit</p>

<p><input type = "text" name = "firstName" />

<input type = "submit" value = "Submit" />

</p>

</form>

<% // continue scriptlet

} // end else

%> <%-- end scriptlet --%>

</body>

</html>  <!-- end HTML document -->



CNT 4714:  JSPs Part 1 Page 19 Dr. Mark Llewellyn ©

Editors like Notepad++ will 

delineate your scriplets and allow 

for easy differentiation of the 

various scripting elements that 

make up more complex JSP files.



CNT 4714:  JSPs Part 1 Page 20 Dr. Mark Llewellyn ©

Original 

page

Execution of 

JSP



CNT 4714:  JSPs Part 1 Page 21 Dr. Mark Llewellyn ©

How A JSP Is Processed
• Much like a servlet, a JSP must first be processed by a web server

before it can be displayed in a web browser. The web server must
support JSPs and the JSP page must be stored in a file with a .jsp
extension. The web server translates the JSP into a Java servlet,
compiles the servlet, and executes it. The result of the execution is
sent to the browser for display.

Web Browser

Web Server Host

Host Machine File System

Servlet Engine

Web 

Server

generate response
process servlet

send a request URL

HTML page returned

How A JSP Is Processed

JSP

Translator

get JSP file

get servlet

generate servlet



CNT 4714:  JSPs Part 1 Page 22 Dr. Mark Llewellyn ©

More On JSP Scripting Constructs

• There are three main types of JSP constructs:
scripting constructs, directives, and actions.

• Scripting elements allow you to specify Java code
that will become part of the resultant servlet.

• Directives enable you to control the overall structure
of the resultant servlet.

• Actions enable you to control the behavior of the
JSP engine.

• We’ll look in more detail at all of these, starting
with the scripting constructs.



CNT 4714:  JSPs Part 1 Page 23 Dr. Mark Llewellyn ©

Scripting Constructs

• There are three main types of JSP scripting
constructs that can be used to insert Java code into a
resultant servlet: expressions, scriptlets and
declarations. Recall that there are also comments
and escape sequences.

• A JSP expression is used to insert a Java expression
directly into the output. It has the following form:

<%= java expression %>

• The expression is evaluated, converted into a string,
and set to the output stream of the servlet.



CNT 4714:  JSPs Part 1 Page 24 Dr. Mark Llewellyn ©

Scripting Constructs
• A JSP scriptlet enables you to insert a Java statement into the

servlet’s jspService method which is invoked by the service
method. A JSP scriptlet has the following form:

<% java statement %>

• A JSP declaration is for declaring methods or fields into the
servlet. It has the following form:

<%! java declaration %>

• HTML comments have the form:

<!-- HTML comment -->

• If you don’t want the comment to appear in the resultant HTML
file, use a JSP comment which has the form:

<%-- JSP comment -->



CNT 4714:  JSPs Part 1 Page 25 Dr. Mark Llewellyn ©

ComputeLoan.html



CNT 4714:  JSPs Part 1 Page 26 Dr. Mark Llewellyn ©

ComputeLoan.jsp

Java statements

Java expressions



CNT 4714:  JSPs Part 1 Page 27 Dr. Mark Llewellyn ©

Scripting Example



CNT 4714:  JSPs Part 1 Page 28 Dr. Mark Llewellyn ©



CNT 4714:  JSPs Part 1 Page 29 Dr. Mark Llewellyn ©

Scripting Example Using Directives



CNT 4714:  JSPs Part 1 Page 30 Dr. Mark Llewellyn ©



CNT 4714:  JSPs Part 1 Page 31 Dr. Mark Llewellyn ©

JSP directive to include a Java class.



CNT 4714:  JSPs Part 1 Page 32 Dr. Mark Llewellyn ©

Scripting Example Using Directives



CNT 4714:  JSPs Part 1 Page 33 Dr. Mark Llewellyn ©

Scripting Example Using Directives



CNT 4714:  JSPs Part 1 Page 34 Dr. Mark Llewellyn ©

JSP Standard Actions

• JSP standard actions provide programmers with access to

several of the most common tasks performed in a JSP, such

as including content from other resources, forwarding

requests to other resources and interacting with JavaBean

software components.

• JSP containers process actions at request time.

• Actions are delimited by <jsp: action> and </jsp:

action>, where action is the standard action name.

– In cases where nothing appears between the starting and ending tags,
the XML empty element syntax <jsp: action /> can be used.



CNT 4714:  JSPs Part 1 Page 35 Dr. Mark Llewellyn ©

JSP Standard Actions

<jsp: include>
Dynamically includes another resource in a JSP. As the JSP executes, 

the referenced resource is included and processed.

<jsp: forward>
Forwards request processing to another JSP, servlet or static page.  

This action terminates the current JSP’s execution.

<jsp: plugin>

Allows a plug-in component to be added to a page in the form of a 

browser-specific object or embed HTML element.  In the case of a 

Java applet, this action enables the browser to download and install 

the Java Pug-in, if it is not already installed on the client computer.

<jsp: param>
Used with the include, forward and plug-in actions to specify 

additional name-value pairs of information for use by these actions.



CNT 4714:  JSPs Part 1 Page 36 Dr. Mark Llewellyn ©

JSP Standard Actions

JavaBean Manipulation

<jsp: useBean>

Specifies that the JSP uses a JavaBean instance (i.e., an object of the 

class that declares the JavaBean).  This action specifies the scope of 

the object and assigns it an ID (i.e., a variable name) that scripting 

components can use to manipulate the bean.

<jsp:setProperty>

Sets a property in the specified JavaBean instance.  A special feature 

of this action is automatic matching of request parameters to bean 

properties of the same name.

<jsp:getProperty>

Gets a property in the specified JavaBean instance and converts the 

result to a string for output in the response.



CNT 4714:  JSPs Part 1 Page 37 Dr. Mark Llewellyn ©

<jsp: include> Action

• JSPs support two include mechanisms – the <jsp: include>
action and the include directive.

• Action <jsp: include> enables dynamic content to be
included in a JSP at request time. If the included resource
changes between requests, the next request to the JSP
containing the <jsp: include> action includes the
resource’s new content.

• The include directive copies the content into the JSP
once, at JSP translation time. If the included resource
changes, the new content will not be reflected in the JSP that
uses the include directive, unless the JSP is recompiled,
which would normally occur only if a new version of the JSP
were installed.



CNT 4714:  JSPs Part 1 Page 38 Dr. Mark Llewellyn ©

A JSP Using the <jsp: include> Action
<!DOCTYPE html>

<!-- include.jsp -->

<html lang="en">

<head>

<title>Using jsp:include</title>

<style type = "text/css">

body { 

font-family: tahoma, helvetica, arial, sans-serif; 

}

table, tr, td { 

font-size: 1.1em;

border: 3px groove;

padding: 5px;

background-color: #dddddd; 

}

</style>

</head>   



CNT 4714:  JSPs Part 1 Page 39 Dr. Mark Llewellyn ©

<body>

<table>

<tr>

<td style = "width: 250px; text-align: center">

<img src = "smallucf.gif" 

width = "140" height = "93" 

alt = "pegasus logo" />

</td>

<td>

<%-- include banner.html in this JSP --%>

<jsp:include page = "banner.html" 

flush = "true" />

</td>

</tr>

<tr>

<td style = "width: 250px">

<%-- include toc.html in this JSP --%>

<jsp:include page = "toc.html" flush = "true" />

</td>

<td style = "vertical-align: top"> 

<%-- include clock2.jsp in this JSP --%>

<jsp:include page = "clock2.jsp" 

flush = "true" />

</td>

</tr>

</table>

</body>

</html>



CNT 4714:  JSPs Part 1 Page 40 Dr. Mark Llewellyn ©

Banner.html

<!-- banner.html                -->

<!-- banner to include in another document -->

<div style = "width: 800px">

<p>

CNT 4714 - Enterprise Computing

<br />

Summer 2014 Semester - University of Central Florida

</p>

<p>

<a href = "mailto:markl@cs.ucf.edu">markl@cs.ucf.edu</a>

</p>

</div>



CNT 4714:  JSPs Part 1 Page 41 Dr. Mark Llewellyn ©

Table of Contents (toc.html)
<!-- toc.html                     -->

<!-- contents to include in another document -->

<p><a href = "http://www.cs.ucf.edu/courses/cnt4714/sum2014">

CNT 4714 Course Webpage

</a></p>

<p><a href = "http://www.cs.ucf.edu/faculty/markl.html">

Instructor's Webpage

</a></p>

<p><a href = 

"http://www.cs.ucf.edu/courses/cnt4714/sum2014/code.html">

Code Download Page

</a></p>

<p><a href = 

"http://www.cs.ucf.edu/courses/cnt4714/sum2014/homework.html">

Programming Assignments Page

</a></p>

<p>Send questions or comments about this site to 

<a href = "mailto:markl@cs.ucf.edu">

markl@cs.ucf.edu

</a><br />

</p>



CNT 4714:  JSPs Part 1 Page 42 Dr. Mark Llewellyn ©

Clock2.jsp
<!-- clock2.jsp                        -->

<!-- date and time to include in another document via redirection -->

<table>

<tr>

<td style = "background-color: black;">

<p class = "big" style = "color: cyan; font-size: 3em; 

font-weight: bold;">

<%-- script to determine client local and --%>

<%-- format date accordingly              --%>

<% 

// get client locale

java.util.Locale locale = request.getLocale();

// get DateFormat for client's Locale

java.text.DateFormat dateFormat = 

java.text.DateFormat.getDateTimeInstance(

java.text.DateFormat.LONG,

java.text.DateFormat.LONG, locale );

%>  <%-- end script --%>

<%-- output date --%>

<%= dateFormat.format( new java.util.Date() ) %>

</p> 

</td>

</tr>

</table>



CNT 4714:  JSPs Part 1 Page 43 Dr. Mark Llewellyn ©

Execution of include.jsp



CNT 4714:  JSPs Part 1 Page 44 Dr. Mark Llewellyn ©

<jsp: forward> Action

• JSP action <jsp: forward> enables a JSP to forward

request processing to a different resource, such as an error

page.

• Request processing by the original JSP terminates as soon as

the JSP forwards the request.

• In the next example, this action is illustrated by forwarding a

welcome request to another welcome page. JSP

forward1.jsp forwards the request to JSP

forward2.jsp. The forwarding action requests a date

and time at which the original request was received that is

forwarded.



CNT 4714:  JSPs Part 1 Page 45 Dr. Mark Llewellyn ©

Initial Forward JSP (forward1.jsp)
<!DOCTYPE html>

<!-- forward1.jsp -->

<html lang="en">

<head>

<title>Forward request to another JSP</title>

</head>

<body>

<% // begin scriptlet

String name = request.getParameter( "firstName" );

if ( name != null ) 

{

%> <%-- end scriptlet to insert fixed template data --%>

<jsp:forward page = "forward2.jsp">

<jsp:param name = "date" 

value = "<%= new java.util.Date() %>" />

</jsp:forward>

<% // continue scriptlet

} // end if



CNT 4714:  JSPs Part 1 Page 46 Dr. Mark Llewellyn ©

Initial Forward JSP (forward1.jsp) (cont.)

else 

{

%> <%-- end scriptlet to insert fixed template data --%>

<form action = "forward1.jsp" method = "get">               

<p>Type your first name and press Submit</p>

<p><input type = "text" name = "firstName" />

<input type = "submit" value = "Submit" />

</p>

</form>

<%  // continue scriptlet

} // end else

%> <%-- end scriptlet --%>

</body>

</html>  <!-- end HTML document -->



CNT 4714:  JSPs Part 1 Page 47 Dr. Mark Llewellyn ©

Forward2 JSP (forward2.jsp)
<!DOCTYPE html>

<!-- forward2.jsp -->

<html lang="en">

<head>

<title>Processing a forwarded request</title>

<style type = "text/css">

.big 

{ 

font-family: tahoma, helvetica, arial, sans-serif;

font-weight: bold;

font-size: 2em; 

}

</style>

</head>

<body>

<p class = "big">

Hello <%= request.getParameter( "firstName" ) %>, <br />

Your redirection request was received <br /> and 

forwarded at



CNT 4714:  JSPs Part 1 Page 48 Dr. Mark Llewellyn ©

Forward2 JSP (forward2.jsp) (cont.)

</p>

<table style = "border: 6px outset;">

<tr>

<td style = "background-color: black;">

<p class = "big" style = "color: cyan;">

<%= request.getParameter( "date" ) %>

</p> 

</td>

</tr>

</table>

</body>

</html>



CNT 4714:  JSPs Part 1 Page 49 Dr. Mark Llewellyn ©

Original request is 

invoked by 

forward1.jsp



CNT 4714:  JSPs Part 1 Page 50 Dr. Mark Llewellyn ©

Forward2.jsp receives 

forwarded request for 

service with firstName 

passed as a 

parameter


